• Skip to main content

Jac Board Solutions

Jac Board Solutions PDF Download

Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3

February 20, 2021 by Jac Board Leave a Comment

Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3 – Jac Board Solutions

Welcome to the official website of Jac Board Solutions. Here at this page Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3 – Jac Board Solutions is given in PDF Format. The direct download links are given below on this page. You can find direct download links on this page.

Jharkhand Board Solutions Pdf Download

झारखण्ड बोर्ड सलूशन की ऑफिसियल वेबसाइट पर आपका स्वागत है | इस पेज पर झारखण्ड बोर्ड Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3 – Jac Board Solutions का सलूशन (हल) दिया गया है | यह सलूशन latest pattern पर आधारित है | सभी पीडीऍफ़ फाइल्स का डाउनलोड नीचे पेज पर दिया गया है |

Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3 Text Book Questions and Answers.

Jharkhand Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3

Jac Board Class 10 Maths पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3

(जब तक अन्यथा न कहा जाए, π =

227\frac {22}{7}

722​ लीजिए।)

प्रश्न 1.
त्रिज्या 4.2 cm वाले धातु के एक गोले को पिघलाकर त्रिज्या 6 cm वाले एक बेलन के रूप में ढाला जाता है। बेलन की ऊँचाई ज्ञात कीजिए।
हल
गोले की त्रिज्या (R) = 4.2 cm
गोले का आयतन =

43\frac{4}{3}

34​ πR3
=

43\frac{4}{3}

34​ π(4.2)3
=

43\frac{4}{3}

34​ π × 4.2 × 4.2 × 4.2
= 98.784π cm3
माना बेलन की ऊँचाई h cm है।
बेलन की त्रिज्या (r) = 6 cm
(दिया है) बेलन का आयतन = πr2h = π × (6)2 × h = 36πh cm3
चूँकि गोले को पिघलाकर एक बेलन बनाया जाता है, इसलिए बेलन का आयतन, इस प्रकार बने गोले के आयतन के बराबर होगा।
बेलन का आयतन = गोले का आयतन
36πh = 98.784π
⇒ h =

98.784π36π\frac{98.784 \pi}{36 \pi}

36π98.784π​ = 2.744 cm
अतः बेलन की ऊँचाई = 2.744 cm (लगभग)।

प्रश्न 2.
क्रमश: 6 cm, 8 cm और 10 cm त्रिज्याओं वाले धातु के तीन ठोस गोलों को पिघलाकर एक बड़ा ठोस गोला बनाया जाता है। इस गोले की त्रिज्या ज्ञात कीजिए।
हल
माना तीन ठोस गोलों की त्रिज्याएँ
r1 = 6 cm, r2 = 8 cm व r3 = 10 cm हैं।

तीनों गोलों को पिघलाकर एक बड़ा गोला बनाया जाता है।
बड़े गोले का आयतन = तीनों गोलों का कुल आयतन = 2304π cm3
माना बड़े गोले की त्रिज्या R है।
तब, बड़े गोले का आयतन =

43\frac{4}{3}

34​ πR3

43\frac{4}{3}

34​ πR3 = 2304π
⇒ R3 =

2304×34\frac{2304 \times 3}{4}

42304×3​ = 1728
⇒ R3 = (12)3
⇒ R = 12
अत: बड़े गोले की त्रिज्या 12 cm है।

प्रश्न 3.
व्यास 7 m वाला 20 m गहरा एक कुँआ खोदा जाता है और खोदने से निकली हुई मिट्टी को समान रूप से फैलाकर 22 m × 14 m वाला एक चबूतरा बनाया गया है। इस चबूतरे की ऊँचाई ज्ञात कीजिए।
हल
दिया है, कुएँ का व्यास = 7 m
कुएँ की त्रिज्या (r) =

72\frac{7}{2}

27​ m
तथा कुएँ की गहराई (h) = 20 m
कुएँ से निकली मिट्टी का आयतन = πr2h
=

227×72×72×20\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20

722​×27​×27​×20
= 770 cm3
माना चबूतरे की ऊँचाई h m है।
चबूतरे का आयतन = 22 × 14 × h cm3
22 × 14 × h = 770
⇒ h =

77022×14\frac{770}{22 \times 14}

22×14770​ = 2.5 m
अत: चबूतरे की ऊँचाई 2.5 m है।

प्रश्न 4.
व्यास 3 m का एक कुआँ 14 m की गहराई तक खोदा जाता है। इससे निकली हुई मिट्टी को कुएँ के चारों ओर 4 m चौड़ी एक वृत्ताकार वलय (ring) बनाते हुए, समान रूप से फैलाकर एक प्रकार का बाँध बनाया जाता है। इस बाँध की ऊँचाई ज्ञात कीजिए।
हल
दिया है, कुएँ का व्यास = 3 m
कुएँ की त्रिज्या (r) =

32\frac{3}{2}

23​ m
तथा कुएँ की गहराई (h) = 14 m
कुएँ से निकली मिट्टी का आयतन = πr2h
=

227×32×32×14\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 14

722​×23​×23​×14
= 99 m3
कुएँ की त्रिज्या =

32\frac{3}{2}

23​ m है और कुएँ के चारों ओर 4 m चौड़ा वलयाकार चबूतरा बनाया जाता है।
कुएँ की बाहरी त्रिज्या (r1) =

32\frac{3}{2}

23​ + 4 =

112\frac{11}{2}

211​ m
तथा भीतरी त्रिज्या (r2) =

32\frac{3}{2}

23​ m
वलयाकार चबूतरे का क्षेत्रफल
Jac Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3 Q4
माना बाँध की ऊँचाई h m है।
तब, बाँध की मिट्टी का आयतन = 88 × h m3
बाँध की मिट्टी का आयतन = कुएँ से निकली मिट्टी का आयतन
88h = 99
h =

9988=98\frac{99}{88}=\frac{9}{8}

8899​=89​ = 1.125 m
अत: बाँध की ऊँचाई = 1.125 m

प्रश्न 5.
व्यास 12 cm और ऊँचाई 15 cm वाले एक लम्बवृत्तीय बेलन के आकार का बर्तन आइसक्रीम से पूरा भरा हुआ है। इस आइसक्रीम को ऊँचाई 12 cm और व्यास 6 cm वाले शंकुओं में भरा जाना है, जिनका ऊपरी सिरा अर्द्धगोलाकार होगा। उन शंकुओं की संख्या ज्ञात कीजिए जो इस आइसक्रीम से भरे जा सकते हैं।
हल
दिया है, बेलनाकार बर्तन का व्यास = 12 cm
बेलनाकार बर्तन की त्रिज्या (r) = 6 cm तथा बर्तन की ऊँचाई (h) = 15 cm
तब, बेलनाकार बर्तन का आयतन = πr2h = π × (6)2 × 15 = 540π cm3
आइसक्रीम का कुल आयतन = बेलनाकार वर्तन का आयतन = 540π cm3
शंकु की त्रिज्या (r’) =

62\frac{6}{2}

26​ = 3 cm तथा ऊँचाई (h’) = 12 cm
शंकु का आयतन =

13πr2h′\frac{1}{3} \pi r^{2} h^{\prime}

31​πr2h′
=

13\frac{1}{3}

31​ × π × (3)2 × 12
= 36π cm3
शंकु के मुँह पर अर्द्धगोलाकार आइसक्रीम का आयतन =

23πr3\frac{2}{3} \pi r^{3}

32​πr3
=

23\frac{2}{3}

32​ π × (3)3
= 18π cm3
आइसक्रीम से भरे शंकु का आयतन = (36π + 18π) = 54π cm3

अत: आइसक्रीम द्वारा भरे जाने वाले शंकुओं की संख्या = 10.

प्रश्न 6.
विमाओं 5.5 cm × 10 cm × 3.5 cm वाला एक घनाभ बनाने के लिए 1.75 cm व्यास और 2 mm मोटाई वाले कितने चाँदी के सिक्कों को पिघलाना पडेगा?
हल
माना चाँदी के n सिक्के पिघलाने पड़ेंगे।
प्रत्येक सिक्के का व्यास = 1.75 cm
175 प्रत्येक सिक्के की त्रिज्या (r) =

1.752cm=175200cm=78cm\frac{1.75}{2} \mathrm{cm}=\frac{175}{200} \mathrm{cm}=\frac{7}{8} \mathrm{cm}

21.75​cm=200175​cm=87​cm
और प्रत्येक सिक्के की ऊँचाई (h) = 2 mm =

210cm=15cm\frac{2}{10} \mathrm{cm}=\frac{1}{5} \mathrm{cm}

102​cm=51​cm
प्रत्येक सिक्के का आयतन = πr2h
=

227×78×78×15\frac{22}{7} \times \frac{7}{8} \times \frac{7}{8} \times \frac{1}{5}

722​×87​×87​×51​
=

77160\frac{77}{160}

16077​ cm3
n सिक्कों का आयतन =

77160\frac{77}{160}

16077​ n cm3
घनाभ का आयतन = 5.5 × 10 × 3.5 cm3 = 192.5 cm3
चाँदी का घनाभ चाँदी के सिक्कों को पिघलाकर बनाया गया है।
सिक्कों का आयतन = घनाभ का आयतन
⇒

77160\frac{77}{160}

16077​ n = 192.5
⇒ n =

192.5×16077\frac{192.5 \times 160}{77}

77192.5×160​ = 400
अत: चाँदी के सिक्कों की संख्या = 400

प्रश्न 7.
32 cm ऊँची और आधार त्रिज्या 18 cm वाली एक बेलनाकार बाल्टी रेत से भरी हुई है। इस बाल्टी को भूमि पर खाली किया जाता है और इस रेत की एक शंक्वाकार ढेरी बनाई जाती है। यदि शंक्वाकार ढेरी की ऊँचाई 24 cm है तो इस ढेरी की त्रिज्या और तिर्यक ऊँचाई ज्ञात कीजिए।
हल
दिया है, बेलनाकार बाल्टी के आधार की त्रिज्या (r) = 18 cm
तथा बाल्टी की ऊँचाई (h) = 32 cm
बाल्टी रेत से भरी हुई है।
रेत का आयतन = बेलनाकार बाल्टी का आयतन = πr2h
= π × 18 × 18 × 32 cm3
= 10368π cm3
इस रेत से एक शंक्वाकार ढेरी बनाई जाती है जिसकी ऊँचाई (H) = 24 cm है।
माना शंक्वाकार ढेरी की त्रिज्या R cm है।
शंक्वाकार ढेरी का आयतन =

13\frac{1}{3}

31​πR2H
=

13\frac{1}{3}

31​πR2 × 24
= 8πR2 cm3
यह दोनों आयतन बराबर हैं।

अत: ढेरी की त्रिज्या = 36 cm
तथा तिर्यक ऊँचाई = 12√13 cm या 43.27 cm (लगभग)।

प्रश्न 8.
6 m चौड़ी और 1.5 m गहरी एक नहर में पानी 10 km/h की चाल से बह रहा है। 30 मिनट में, यह नहर कितने क्षेत्रफल की सिंचाई कर पाएगी, जबकि सिंचाई के लिए 8 cm गहरे पानी की आवश्यकता होती है?
हल
नहर में पानी की चाल = 10 km/h
=

10×100060\frac{10 \times 1000}{60}

6010×1000​ m/min
=

5003\frac{500}{3}

3500​ m/min
नहर की चौड़ाई = 6 m तथा गहराई = 1.5 m (दिया है)
तब, 6 m × 1.5 m ×

5003\frac{500}{3}

3500​ m विमाओं वाले घनाभ के आयतन के बराबर पानी प्रति मिनट स्थानान्तरित करेगी।
30 मिनट में स्थानान्तरित पानी का आयतन = 30 × 6 × 1.5 ×

5003\frac{500}{3}

3500​ = 45000 m3
यदि सिंचाई के लिए 8 cm या

8100\frac{8}{100}

1008​ m गहरे पानी की आवश्यकता है, तो
सिंचित क्षेत्र का क्षेत्रफल ×

8100\frac{8}{100}

1008​ = 45000 m3
सिंचित क्षेत्र का क्षेत्रफल =

45000×1008\frac{45000 \times 100}{8}

845000×100​ = 562500 m2
अत: नहर द्वारा 30 मिनट में सिंचित क्षेत्र का क्षेत्रफल = 562500 m2

प्रश्न 9.
एक किसान अपने खेत में बनी 10 m व्यास वाली और 2 m गहरी एक बेलनाकार टंकी को, आन्तरिक व्यास 20 cm वाले एक पाइप द्वारा एक नहर से जोड़ता है। यदि पाइप में पानी 3 km/h की चाल से बह रहा है तो कितने समय बाद टंकी परी भर जाएगी?
हल
दिया है, टंकी का व्यास = 10 m
टंकी की त्रिज्या (r) = 5 m
टंकी की गहराई (h) = 2 m
बेलनाकार टंकी का आयतन = πr2h = π × (5)2 × 2 = 50π m3
पाइप का व्यास = 20 cm
पाइप की त्रिज्या (R) = 10 cm =

10100\frac{10}{100}

10010​ m =

110\frac{1}{10}

101​ m
पाइप में पानी की चाल = 3 km/h
=

3×100060\frac{3 \times 1000}{60}

603×1000​ m/min
= 50 m/min
तब, पाइप टंकी में

110\frac{1}{10}

101​ m त्रिज्या और 50 m लम्बाई के बेलन के आयतन के बराबर पानी प्रति मिनट स्थानान्तरित करेगा।
यदि टंकी को भरने में n मिनट का समय लगता हो, तो
n मिनट में स्थानान्तरित पानी का आयतन = बेलनाकार टंकी का आयतन

अतः टंकी 100 मिनट में पूरी भर जाएगी।

Thanks! for visiting the official website of Jharkhand Board Solutions (JacBoardSolutions.in). Jai Hind!

Share this:

  • Twitter
  • Facebook

Filed Under: Uncategorized

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Copyright © 2021 · Jac Board Solutions