Jac Board Class 10 Maths Solutions Chapter 2 बहुपद Ex 2.4 – Jac Board Solutions
Welcome to the official website of Jac Board Solutions. Here at this page Jac Board Class 10 Maths Solutions Chapter 2 बहुपद Ex 2.4 – Jac Board Solutions is given in PDF Format. The direct download links are given below on this page. You can find direct download links on this page.
झारखण्ड बोर्ड सलूशन की ऑफिसियल वेबसाइट पर आपका स्वागत है | इस पेज पर झारखण्ड बोर्ड Jac Board Class 10 Maths Solutions Chapter 2 बहुपद Ex 2.4 – Jac Board Solutions का सलूशन (हल) दिया गया है | यह सलूशन latest pattern पर आधारित है | सभी पीडीऍफ़ फाइल्स का डाउनलोड नीचे पेज पर दिया गया है |
Jharkhand Jac Board Class 10 Maths Solutions Chapter 2 बहुपद Ex 2.4
प्रश्न 1.
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। प्रत्येक स्थिति में शून्यकों और गुणांकों के बीच के सम्बन्ध को भी
सत्यापित कीजिए-
(i) 2x3 + x2 – 5x + 2; \frac{1}{2}, 1, -2
(ii) x3 – 4x2 + 5x – 2; 2, 1, 1
हल
(i) दिया है, त्रिघात बहुपद p(x) = 2x3 + x2 – 5x + 2 ……. (1)
दी गई संख्याएँ : \frac{1}{2}, 1, -2
समीकरण (1) में x = \frac{1}{2} रखने पर,
\frac{1}{2}, बहुपद p(x) का एक शून्यक है।
समीकरण (1) में x = 1 रखने पर,
p(1) = 2(1)3 + (1)2 – 5(1) + 2
= 2 + 1 – 5 + 2
= 0
1, बहुपद p (x) का एक शून्यक है।
पुनः समीकरण (1) में x = -2 रखने पर,
p(-2) = 2(-2)3 + (-2)2 – 5(-2) + 2
= (2 × -8) + 4 + 10 + 2
= -16 + 16
= 0
-2, बहुपद p (x) का एक शून्यक है।
अत: \frac{1}{2},1 व -2 बहुपद 2x3 + x2 – 5x + 2 के शून्यक हैं।
शून्यकों का योगफल = \frac{1}{2} + 1 + (-2) = \frac{-1}{2}
दो-दो करके गुणनफलों का योगफल = \frac{1}{2} × 1 + 1(-2) + (-2) × \frac{1}{2} = \frac{-5}{2}
शून्यकों का गुणनफल = \frac{1}{2} × 1 × -2 = -1
बहुपद 2x3 + x2 – 5x + 2 के पदों के गुणांक a = 2, b = 1, c = -5 व d = 2
यदि बहुपद के शून्यक α, β, γ हों तो
शून्यकों का योगफल (α + β + γ) = -\frac{b}{a}=-\frac{1}{2}
αβ + βγ + γα = \frac{c}{a}=-\frac{5}{2}
और मूलों का गुणनफल (αβγ) = -\frac{d}{a}=-\frac{2}{2}=-1
और शून्यकों \frac{1}{2}, 1 व -2 द्वारा भी योगफल व गुणनफल वही हैं जो इनमें हैं।
अत: बहुपद के शून्यकों व गुणांकों के मध्य उपर्युक्त सम्बन्ध सत्य हैं।
इति सिद्धम्
(ii) दिया है, त्रिघात बहुपद p(x) = x3 – 4x2 + 5x – 2 ……..(1)
दी गई संख्याएँ : 2, 1, 1
समीकरण (1) में x = 2 रखने पर,
तब, p(2) = (2)3 – 4(2)2 + 5(2) – 2
= 8 – 4 × 4 + 10 – 2
= 8 – 16 + 10 – 2
= 0
2, बहुपद p (x) का एक शून्यक है।
पुनः समीकरण (1) में x = 1 रखने पर,
p(1) = (1)3 – 4(1)2 + 5(1) – 2
= 1 – 4 + 5 – 2
= 0
1, बहुपद p(x) का एक शून्यक है।
तब, स्पष्ट है कि 2, 1, 1 बहुपद = x3 – 4x2 + 5x – 2 के शून्यक हैं।
इन शून्यकों का योगफल = 2 + 1 + 1 = 4 तथा गुणनफल 2 × 1 × 1 = 2
दो-दो करके गुणनफलों का योगफल = (2 × 1) + (1 × 1) + (1 × 2) = 5
अब, बहुपद x3 – 4x2 + 5x – 2 के पदों के गुणांक a = 1, b = -4, c = 5 तथा d = -2
यदि शून्यक α, β व γ हों तो
शून्यकों का योगफल (α + β + γ) = -\frac{b}{a}=-\frac{(-4)}{1}=+4
दो-दो करके गुणनफलों का योगफल (αβ + βγ + γα) = \frac{c}{a}=\frac{5}{1}=5
तथा शून्यकों का गुणनफल (αβγ) = -\frac{d}{a}=-\left(\frac{-2}{1}\right)=2
शून्यकों 2, 1, 1 से प्राप्त योगफल व गुणनफल भी यही हैं।
अत: बहुपद के शून्यकों का उनके गुणांकों से उक्त सम्बन्ध सत्य हैं।
इति सिद्धम्
प्रश्न 2.
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योगफल, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योगफल तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
हल
माना बहुपद के शून्यक α, β व γ हैं।
तब, प्रश्नानुसार शून्यकों का योगफल (α + β + γ) = 2
दो शून्यकों को एक साथ लेकर उसके गुणनफलों का योगफल (αβ + βγ + γα) = -7
शून्यकों का गुणनफल (αβγ) = -14
यदि शून्यक α, β व γ हों तो त्रिघात बहुपद
= x3 – (α + β + γ)x2 + (αβ + βγ + γα)x – αβγ
= x3 – 2x2 + (-7)x – (-14)
= x3 – 2x2 – 7x + 14
अत: अभीष्ट बहुपद = x3 – 2x2 – 7x + 14
प्रश्न 3.
यदि बहुपद x3 – 3x2 + x + 1 के शून्यक a – b, a, a + b हों तो a और b ज्ञात कीजिए।
हल
दिया गया बहुपद = x3 – 3x2 + x + 1 की बहुपद Ax3 + Bx2 + Cx + D से तुलना करने पर,
A = 1, B = -3, C = 1 तथा D = 1
तब, शून्यकों का योगफल = -\frac{B}{A}=-\frac{(-3)}{1}
तब, शून्यकों का योगफल = 3
परन्तु शून्यक a – b, a तथा a + b हैं;
अत: a – b + a + a + b = 3
⇒ 3a = 3
⇒ a = 1
और शून्यकों का गुणनफल = \frac{-D}{A}=\frac{-1}{1}=-1
परन्तु शून्यकों का गुणनफल (a – b) a (a + b) = a(a2 – b2)
a(a2 – b2) = -1
a = 1 रखने पर,
1(1 – b2) = -1
⇒ 1 – b2 = -1
⇒ b2 = 2
⇒ b = ±√2
a = 1 और b = ±√2
प्रश्न 4.
यदि बहुपद x4 – 6x3 – 26x2 + 138x – 35 के दो शून्यक 2 ± √3 हों तो अन्य शून्यक ज्ञात कीजिए।
हल
चूँकि बहुपद 4 घात का है; अत: इसमें अधिकतम चार शून्यक सम्भव हैं जिनमें दो शून्यक 2 + √3 व 2 – √3 ज्ञात हैं।
माना शेष दो शून्यक α व β हैं।
तब, (x – α) (x – β) (x – 2 – √3) (x – 2 + √3) = x4 – 6x3 – 26x2 + 138x – 35
⇒ (x – α) (x – β) [(x – 2)2 – (√3)2] = x4 – 6x3 – 26x2 + 138x – 35
⇒ (x – α) (x – β) (x2 – 4x + 4 – 3) = x4 – 6x3 – 26x2 + 138x – 35
⇒ (x – α) (x – β) (x2 – 4x + 1) = x4 – 6x3 – 26x2 + 138x – 35
(x – α) (x – β)
= x2 – 2x – 35
= x2 – (7 – 5)x – 35
= x2 – 7x + 5x – 35
= x(x – 7) + 5(x – 7)
= (x – 7) (x + 5)
⇒ (x – α) (x – β) = (x – 7) (x + 5)
α = 7 तथा β = -5
अतः दिए गए बहुपद के दो अन्य शून्यक 7, -5 हैं।
प्रश्न 5.
यदि बहुपद x4 – 6x3 + 16x2 – 25x + 10 को एक अन्य बहुपद x2 – 2x + k से भाग दिया जाए और शेषफल x + a आता हो तो k तथा a ज्ञात कीजिए।
हल
माना भाज्य बहुपद p(x) = x4 – 6x3 + 16x2 – 25x + 10
भाजक बहुपद g(x) = x2 – 2x + k तथा शेषफल r(x) = x + a है।
पुनः माना भागफल बहुपद q(x) है।
तब, यूक्लिड की विभाजन प्रमेय से,
g (x) . q (x) + r(x) = p (x)
⇒ (x2 – 2x + k) + (x + a) q (x) = x4 – 6x3 + 16x2 – 25x + 10
⇒ (x2 – 2x + k) q(x) = x4 – 6x3 + 16x2 – 25x + 10 – x – a
⇒ (x2 – 2x + k) q(x) = x4 – 6x3 + 16x2 – 26x + (10 – a)
भाज्य बहुपद 4 घात का है और भाजक बहुपद दो घात का है; तब q(x) भी 4 – 2 = 2 घात का बहुपद होगा जिसका स्वरूप Ax2 + Bx + C के रूप का होगा।
तब, \frac{(2 k-10) x+\left(10-a-8 k+k^{2}\right)}{x^{2}-2 x+k} शन्य अथवा शन्य घात का होना चाहिए।
यदी \frac{(2 k-10) x+\left(10-a-8 k+k^{2}\right)}{x^{2}-2 x+k}=0 हो तो
(2k – 10)x + (10 – a – 8k + k2) = 0 होना चाहिए।
परन्तु (2k – 10)x + (10 – a – 8k + k2) शून्य घात का है।
2k – 10 = 0 क्योकि x ≠ 0
तब, k = 5
(2k – 10)x + (10 – a – 8k + k2) = 0 में k = 5 रखने पर,
⇒ (2 × 5 – 10) x + [10 – a – 8 × 5 + (5)2] = 0
⇒ 0+ [10 – a – 40 + 25] = 0
⇒ -a – 5 = 0
⇒ -a = 5
⇒ a = -5
अत: a = -5 तथा k = 5
Thanks! for visiting the official website of Jharkhand Board Solutions (JacBoardSolutions.in). Jai Hind!
Leave a Reply