• Skip to main content

Jac Board Solutions

Jac Board Solutions PDF Download

Jac Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1

February 19, 2021 by Jac Board Leave a Comment

Jac Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1 – Jac Board Solutions

Welcome to the official website of Jac Board Solutions. Here at this page Jac Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1 – Jac Board Solutions is given in PDF Format. The direct download links are given below on this page. You can find direct download links on this page.

Jharkhand Board Solutions Pdf Download

झारखण्ड बोर्ड सलूशन की ऑफिसियल वेबसाइट पर आपका स्वागत है | इस पेज पर झारखण्ड बोर्ड Jac Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1 – Jac Board Solutions का सलूशन (हल) दिया गया है | यह सलूशन latest pattern पर आधारित है | सभी पीडीऍफ़ फाइल्स का डाउनलोड नीचे पेज पर दिया गया है |

Jharkhand Jac Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1

प्रश्न 1.
आफ़ताब अपनी पुत्री से कहता है, ‘सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा।’ (क्या यह मनोरंजक है?) इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।
हल
माना आफ़ताब और उसकी पुत्री की वर्तमान आयु क्रमशः x व y वर्ष है।
7 वर्ष पूर्व आफ़ताब की आयु = (x – 7) वर्ष
7 वर्ष पूर्व उसकी पुत्री की आयु = (y – 7) वर्ष
आफ़ताब पुत्री से कहता है कि 7 वर्ष पूर्व वह पुत्री की आयु का 7 गुना था।
अर्थात् (x – 7) = 7 (y – 7)
⇒ x – 7 = 7y – 49
⇒ x – 7y – 7 + 49 = 0
⇒ x – 7y + 42 = 0
अब से 3 वर्ष बाद आफ़ताब की आयु = (x + 3) वर्ष
अब से 3 वर्ष बाद उसकी पुत्री की आयु = (y + 3) वर्ष
आफ़ताब पुनः पुत्री से कहता है कि अब से 3 वर्ष बाद वह पुत्री की आयु का तिगुना होगा।
अर्थात् (x + 3) = 3(y + 3)
⇒ x + 3 = 3y + 9
⇒ x – 3y = +9 – 3
⇒ x – 3y = 6
कथनों का बीजगणितीय रूप समीकरण युग्म
x – 7y + 42 = 0 ……… (1)
x – 3y = 6 ……. (2)
ज्यामितीय निरूपण :
क्रिया-विधि :
1. दिए हुए समीकरण युग्म का पहला समीकरण x – 7y + 42 = 0
2. माना x = 0, तब x का मान समीकरण x – 7y + 42 = 0 में रखने पर,
0 – 7y + 42 = 0
⇒ 7y = 42
⇒ y = 6
3. तब समीकरण x – 7y + 42 = 0 के आलेख पर एक बिन्दु A = (0, 6) है।
4. पुनः माना x = 7, तब x का मान समीकरण x – 7y + 42 = 0 में रखने पर,
7 – 7y + 42 = 0
⇒ -7y = 49
⇒ y = 7
5. तब समीकरण x – 7y + 42 = 0 के आलेख पर एक बिन्दु B = (7, 7) है।
6. ग्राफ पेपर पर बिन्दुओं A = (0, 6) तथा B = (7, 7) को आलेखित (plotting) कीजिए और दिए गए समीकरण का आलेख AB खींचिए।
7. दिए हुए समीकरण युग्म का अन्य (दूसरा) समीकरण x – 3y = 6
8. माना x = 0, तब x का मान समीकरण x – 3y = 6 में रखने पर,
0 – 3y = 6
⇒ y = -2
9. तब समीकरण x – 3y = 6 के आलेख पर एक बिन्दु C = (0, -2) है।
10. पुनः माना x = 6, तब x का मान समीकरण x – 3y = 6 में रखने पर,
6 – 3y = 6
⇒ -3y = 0
⇒ y = 0
11. तव समीकरण x – 3y = 6 के आलेख पर एक बिन्दु D = (6, 0) है।
12. ग्राफ पेपर पर बिन्दु C = (0, -2) तथा D = (6, 0) को आलेखित कर दिए हुए समीकरण का आलेख CD खींचिए, जो बिन्दु P(42, 12) पर प्रतिच्छेद करती है।

13. ऋजु रेखाएँ AB तथा CD दिए गए कथनों का अभीष्ट ज्यामितीय निरूपण है।

 

प्रश्न 2.
क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में उसने एक और बल्ला तथा उसी प्रकार की 2 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।
हल
माना एक बल्ले का मूल्य ₹ x तथा एक गेंद का मूल्य ₹ y है।
3 बल्लों और 6 गेंदों का मूल्य = ₹ 3900
₹ 3x + ₹ 6y = ₹ 3900
3x + 6y = 3900
इसी प्रकार, एक बल्ले का मूल्य +2 गेंदों का मूल्य = ₹ 1300
₹ x + ₹ 2y = ₹ 1300
x + 2y = 1300
अत: दिए गए कथनों का बीजगणितीय रूप समीकरण युग्म :
3x + 6y = ₹ 3900 ……. (1)
x + 2y = ₹ 1300 ……. (2)
ज्यामितीय निरूपण :
क्रिया-विधि :
1. दिए हुए समीकरण युग्म का पहला समीकरण 3x + 6y = 3900
2. माना x = 100, तब x का मान समीकरण 3x + 6y = 3900 में रखने पर,
(3 × 100) + 6y = 3900
⇒ 300 + 6y = 3900
⇒ 6y = 3600
⇒ y = 600
3. तब समीकरण 3x + 6y = 3900 के आलेख पर एक बिन्दु A = (100, 600) है।
4. पुन: माना x = 300, तब x का मान समीकरण 3x + 6y = 3900 में रखने पर,
(3 × 300) + 6y = 3900
⇒ 900 + 6y = 3900
⇒ 6y – 3900 = -900
⇒ 6y = 3000
⇒ y = 500
5. तब समीकरण 3x + 6y = 3900 के आलेख पर एक बिन्दु B = (300, 500) है।
6. ग्राफ पेपर पर बिन्दुओं A = (100, 600) तथा B = (300, 500) को आलेखित (plotting) कीजिए और दिए गए समीकरण का आलेख AB खींचिए।
7. दिए हुए समीकरण युग्म का दूसरे समीकरण x + 2y = 1300

8. माना x = 500, तब x का मान समीकरण x – 2y = 1300 में रखने पर,
500 + 2y = 1300
⇒ 2y = 1300 – 500
⇒ 2y = 800
⇒ y = 400
9. तब समीकरण x + 2y = 1300 के आलेख पर एक बिन्दु C = (500, 400) है।
10. पुन: माना x = -100, तब x का मान समीकरण x + 2y = 1300 में रखने पर,
-100 + 2y = 1300
⇒ 2y = 1300 + 100
⇒ 2y = 1400
⇒ y = 700
11. तब समीकरण x + 2y = 1300 के आलेख पर एक बिन्दु D = (-100, 700) है।
12. ग्राफ पेपर पर बिन्दु C = (500, 400) तथा D = (-100, 700) को आलेखित कर दिए हुए समीकरण का आलेख CD खींचिए।
13. ऋजु रेखाएँ AB तथा CD जो कि सम्पाती हैं, दिए गए कथनों का अभीष्ट ज्यामितीय रूप हैं।
चित्र से स्पष्ट है कि दोनों कथनों के आलेख ऋजु रेखाएँ AB तथा CD एक ही रेखा है। अतः रेखा AB एवं CD सम्पाती हैं।

 

प्रश्न 3.
2 किग्रा सेब और 1 किग्रा अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 किग्रा सेब और 2 किग्रा अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।
हल
माना एक दिन 1 किग्रा सेब का मूल्य ₹ x तथा 1 किग्रा अंगूर का मूल्य ₹ y है।
तब, 2 किग्रा सेब का मूल्य +1 किग्रा अंगूर का मूल्य = ₹ 160
2x + y = 160
1 महीने बाद, 4 किग्रा सेब का मूल्य +2 किग्रा अंगूर का मूल्य = ₹ 300
4x + 2y = 300
अत: दिए गए कथनों का बीजगणितीय रूप समीकरण युग्म
2x + y = 160 ……. (1)
4x + 2y = 300 ……. (2)
ज्यामितीय निरूपण :
क्रिया-विधि :
1. दिए हुए समीकरण युग्म का पहला समीकरण 2x + y = 160
2. माना x = 50, तब x का मान समीकरण 2x + y = 160 में रखने पर,
2 × 50 + y = 160
⇒ 100 + y = 160
⇒ y = 160 – 100
⇒ y = 60
3. तब समीकरण 2x + y = 160 के आलेख पर एक बिन्दु A = (50, 60) है।
4. पुन: माना x = 0, तब x का मान समीकरण 2x + y = 160 में रखने पर,
2 × 0 + y = 160
⇒ 0 + y = 160
⇒ y = 160
5. तब समीकरण 2x + y = 160 के आलेख पर एक बिन्दु B = (0, 160) है।
(6) ग्राफ पेपर पर बिन्दुओं A = (50, 60) तथा B = (0, 160) को आलेखित (plotting) कीजिए और दिए गए समीकरण का आलेख AB खींचिए।
7. दिए हुए समीकरण युग्म का दूसरा समीकरण 4x + 2y = 300
8. माना x = 75, तब x का मान समीकरण 4x + 2y = 300 में रखने पर,
4 × 75 + 2y = 300
⇒ 300 + 2y = 300
⇒ 2y = 300 – 300 = 0
⇒ y = 0
9. तब समीकरण 4x + 2y = 300 के आलेख पर एक बिन्दु C = (75, 0) है।

10. पुन: माना x = 0, तब x का मान समीकरण 4x + 2y = 300 में रखने पर,
4 × 0 + 2y = 300
⇒ 0 + 2y = 300
⇒ 2y = 300
⇒ y = 150
11. तब समीकरण 4x + 2y = 300 के आलेख पर एक बिन्दु D = (0, 150) है।
12. ग्राफ पेपर पर बिन्दु C = (75, 0) तथा D = (0, 150) को आलेखित कर दिए हुए समीकरण का आलेख CD खींचिए।
ऋजु रेखाएँ AB तथा CD दिए गए कथनों का अभीष्ट ज्यामितीय रूप हैं।

 

Thanks! for visiting the official website of Jharkhand Board Solutions (JacBoardSolutions.in). Jai Hind!

Share this:

  • Twitter
  • Facebook

Filed Under: Class 10

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Copyright © 2021 · Jac Board Solutions