Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 – Jac Board Solutions
Welcome to the official website of Jac Board Solutions. Here at this page Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 – Jac Board Solutions is given in PDF Format. The direct download links are given below on this page. You can find direct download links on this page.
झारखण्ड बोर्ड सलूशन की ऑफिसियल वेबसाइट पर आपका स्वागत है | इस पेज पर झारखण्ड बोर्ड Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 – Jac Board Solutions का सलूशन (हल) दिया गया है | यह सलूशन latest pattern पर आधारित है | सभी पीडीऍफ़ फाइल्स का डाउनलोड नीचे पेज पर दिया गया है |
Jharkhand Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4
प्रश्न 1.
मान लीजिए ΔABC ~ ΔDEF है और इनके क्षेत्रफल क्रमशः 64 cm2 और 121 cm2 हैं। यदि EF = 15.4 cm2 हो तो BC ज्ञात कीजिए।
हल
त्रिभुजों के क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात
⇒ 11BC = 8 × 15.4
⇒ BC = \frac{8 \times 15.4}{11} = 11.2
अत: BC = 11.2 cm
प्रश्न 2.
एक समलम्ब ABCD जिसमें AB || CD है, के विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं। यदि AB = 2CD हो तो त्रिभुजों AOB और COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
हल
AB || CD और AC तिर्यक रेखा है।
∠CAB = ∠ACD या ∠OAB = ∠OCD
AB || CD और DB तिर्यक रेखा है।
∠DBA = ∠BDC या ∠OBA = ∠ODC
अब, ∆AOB तथा ∆COD में,
∠OAB = ∠OCD (एकान्तर कोण)
∠OBA = ∠ODC (एकान्तर कोण)
तथा ∠AOB = ∠COD (शीर्षाभिमुख कोण)
∆OAB ~ ∆OCD
प्रश्न 3.
दी गई आकृति में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O पर प्रतिच्छेद करे, तो दर्शाइए कि \frac { ar(ABC) }{ ar(DBC) } =\frac { AO }{ DO } है।
हल
दिया है : ∆ABC तथा ∆DBC एक ही आधार BC पर स्थित दो त्रिभुज हैं। AD, BC को बिन्दु O पर प्रतिच्छेद करता है।
सिद्ध करना है : \frac { ar(ABC) }{ ar(DBC) } =\frac { AO }{ DO }
रचना : शीर्ष A से BC पर AE तथा शीर्ष D से BC पर DF लम्ब खींचा।
उपपत्ति : शीर्षों A तथा D से BC पर AE तथा DF लम्ब खींचे गए हैं।
अत: ∆AEO तथा ∆DFO समकोणीय हैं।
समकोण ∆AEO तथा ∆DFO में,
∠AEO = ∠DFO (प्रत्येक 90°)
∠AOE = ∠DOF (शीर्षाभिमुख कोण हैं)
∆AEO ~ ∆DFO (उप-गुणधर्म AA से)
\frac{A E}{D F}=\frac{A O}{D O} ……(1)
अब, ∆ABC का क्षेत्रफल = \frac {1}{2} × BC × AE
और ∆DBC का क्षेत्रफल = \frac {1}{2} × BC × DF
प्रश्न 4.
यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे सर्वांगसम होते हैं।
हल
दिया है: ∆ABC तथा ∆DEF समरूप हैं और ∆ABC का क्षेत्रफल = ∆DEF का क्षेत्रफल
सिद्ध करना है: ∆ABC = ∆DEF
उपपत्ति: चूँकि समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।
अब, ∆ABC और ∆DEF में,
∠ABC = ∠DEF (∵ ∆ABC ~ ∆DEF)
∠ACB = ∠DFE (∵ ∆ABC ~ ∆DEF)
अतः BC = EF (ऊपर सिद्ध किया है)
∆ABC = ∆DEF
इति सिद्धम्
प्रश्न 5.
एक ∆ABC की भुजाओं AB, BC और CA के मध्य-बिन्दु क्रमश: D, E और F हैं। ∆DEF और ∆ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
हल
दिया है : ABC की भुजाओं BC, CA, AB के मध्य-बिन्दु क्रमशः D, E, F हैं जिनको मिलाने से ∆DEF बना है।
ज्ञात करना है : ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल
गणना : D, E, F क्रमश: BC, CA, AB के मध्य-बिन्दु हैं।
अत: ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल = 1 : 4
प्रश्न 6.
सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है।
हल
दिया है : दो समरूप ∆ABC और ∆DEF हैं, जिनमें AP तथा DQ संगत माध्यिकाएँ हैं।
प्रश्न 7.
सिद्ध कीजिए कि एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का
आधा होता है।
हल
दिया है : चतुर्भुज ABCD एक वर्ग है जिसकी एक भुजा AB तथा विकर्ण AC है।
AB तथा AC पर समबाहु ∆ABE तथा ∆ACF बनाए गए हैं।
सिद्ध करना है : ∆ABE का क्षेत्रफल = \frac {1}{2} ∆ACF का क्षेत्रफल
उपपत्ति : वर्ग ABCD की भुजा = AB
वर्ग ABCD का विकर्ण AC = AB√2
अत: ∆ABE का क्षेत्रफल = \frac{1}{2} ∆ACF का क्षेत्रफल
इति सिद्धम्
सही उत्तर चुनिए और अपने उत्तर का औचित्य दीजिए-
प्रश्न 8.
ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिन्दु है। त्रिभुजों ABC और BDE के क्षेत्रफलों का अनुपात है-
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4
हल
∆ABC और ∆BDE समरूप त्रिभुज हैं जिनमें D, भुजा BC का मध्य-बिन्दु है।
BD = \frac{1}{2} BC
⇒ BD : BC = 1 : 2
⇒ BC : BD = 2 : 1
तब, ∆ABC का क्षेत्रफल : ∆BDE का क्षेत्रफल = BC2 : BD2 = (2)2 : (1)2 = 4 : 1
अत: विकल्प (C) सही है।
प्रश्न 9.
दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात है-
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81
हल
दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात = भुजाओं के अनुपात का वर्ग
= (4)2 : (9)2
= 16 : 81
अत: विकल्प (D) सही है।
Thanks! for visiting the official website of Jharkhand Board Solutions (JacBoardSolutions.in). Jai Hind!
Leave a Reply