• Skip to main content

Jac Board Solutions

Jac Board Solutions PDF Download

Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

February 20, 2021 by Jac Board Leave a Comment

Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 – Jac Board Solutions

Welcome to the official website of Jac Board Solutions. Here at this page Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 – Jac Board Solutions is given in PDF Format. The direct download links are given below on this page. You can find direct download links on this page.

Jharkhand Board Solutions Pdf Download

झारखण्ड बोर्ड सलूशन की ऑफिसियल वेबसाइट पर आपका स्वागत है | इस पेज पर झारखण्ड बोर्ड Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 – Jac Board Solutions का सलूशन (हल) दिया गया है | यह सलूशन latest pattern पर आधारित है | सभी पीडीऍफ़ फाइल्स का डाउनलोड नीचे पेज पर दिया गया है |

Jharkhand Jac Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 1.
दी गई आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि \frac{Q S}{S R}=\frac{P Q}{P R}SRQS​=PRPQ​ है।
हल
दिया है : ∆PQR में PS कोण QPR का समद्विभाजक है।
सिद्ध करना है : \frac{Q S}{S R}=\frac{P Q}{P R}SRQS​=PRPQ​
रचना : बिन्दु R से रेखा RT || PS खींची जो बढ़ाई गई QP को T पर प्रतिच्छेद करे।
उपपत्ति : TR || PS और PR तिर्यक रेखा है
∠SPR = ∠PRT (एकान्तर कोण-युग्म है) ……(1)
पुन: TR || PS और QT तिर्यक रेखा है।
∠QPS = ∠PTR (संगत कोण-युग्म है) ……(2)
परन्तु PS, ∠QPR का समद्विभाजक है।
∠QPS = ∠SPR …….(3)
तब, समीकरण (1), (2) व (3) से,
∠PTR = ∠PRT
∆PTR की भुजा PT = PR ……(4)

अब, ∆QTR में, PS || TR
\frac{P Q}{P T}=\frac{Q S}{S R}PTPQ​=SRQS​
परन्त समीकरण (4) से, PT = PR
अतः \frac{P Q}{P R}=\frac{Q S}{S R} \Rightarrow \frac{Q S}{S R}=\frac{P Q}{P R}PRPQ​=SRQS​⇒SRQS​=PRPQ​
इति सिद्धम्

 

प्रश्न 2.
दी गई आकृति में D, ∆ABC के कर्ण AC पर स्थित एक बिन्दु है जबकि BD ⊥ AC, DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि-
(i) DM2 = DN . MC
(ii) DN2 = DM . AN

हल
दिया है : समकोण ∆ABC में ∠ABC = 90°
BD ⊥ AC, DM ⊥ BC तथा DN ⊥ AB
सिद्ध करना है :
(i) DM2 = DN . MC
(ii) DN2 = DM . AN
उपपत्ति : समकोण ∆ABC में, BD ⊥ AC (दिया है)
∆BDC ~ ∆ABC और ∆ADB ~ ∆ABC
जिससे ∆BDC ~ ∆ADB
तथा ∆BDC और ∆ADB समकोणीय हैं।
(i) समकोण ∆BDC में, DM ⊥ BC (दिया है)
∆DMC ~ ∆BMD
\frac{M C}{D M}=\frac{D M}{B M}DMMC​=BMDM​
⇒ DM2 = BM × MC …….(1)
चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BM = DN ………(2)
तब, समीकरण (1) व (2) से,
DM2 = DN . MC
इति सिद्धम्

(ii) समकोण ∆ADB में, DN ⊥ AB (दिया है)
∆AND और ∆DNB में,
\frac{D N}{B N}=\frac{A N}{D N}BNDN​=DNAN​
⇒ DN2 = BN . AN …….(3)
परन्तु, चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BN = DM ……(4)
तब, समीकरण (3) व (4) से,
DN2 = DM · AN
इति सिद्धम्

 

प्रश्न 3.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2BC . BD है।

हल
दिया है : ∆ABC में, ∠ABC > 90° तथा AD ⊥ CB है।
सिद्ध करना है : AC2 = AB2 + BC2 + 2BC . BD
उपपत्ति : समकोण ∆ABD में,
AB2 = AD2 + BD2 ……(1)
पुनः समकोण ∆ACD में,
AC2 = AD2 + DC2
= AD2 + (BD + BC)2 (∵ DC = BD + BC)
= AD2 + BD2 + BC2 + 2BC . BD [∴ (BD + BC)2 के विस्तार से]
= AB2 + BC2 + 2BC . BD [∴ समीकरण (1) से ]
अतः AC2 = AB2 + BC2 + 2BC . BD
इति सिद्धम्

प्रश्न 4.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° है तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC . BD है।

हल
दिया है : ∠B < 90° तथा AD ⊥ BC
सिद्ध करना है : AC2 = AB2 + BC2 – 2BC . BD
उपपत्ति : AD ⊥ BC
∆ABD तथा ∆ACD समकोणीय त्रिभुज हैं।
तब, समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2 ……(1)
और समकोण त्रिभुज ACD में,
AC2 = AD2 + DC2 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
AC2 – AB2 = DC2 – BD2
⇒ AC2 – AB2 = (DC + BD) (DC – BD) (∵ (a + b) (a – b) = a2 – b2)
⇒ AC2 – AB2 = BC(DC – BD) (∵ DC + BD = BC)
⇒ AC2 – AB2 = BC(BC – BD – BD) (∵ DC = BC – BD)
⇒ AC2 – AB2 = BC (BC – 2BD)
⇒ AC2 – AB2 = BC2 – 2BC × BD
अत: AC2 = AB2 + BC2 – 2BC . BD
इति सिद्धम्

 

प्रश्न 5.
दी गई आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि-

हल
दिया है : ABC एक त्रिभुज है जिसमें D, भुजा BC का मध्य-बिन्दु AM, BC पर लम्ब खींचा गया है और AC > AB
सिद्ध करना है :

उपपत्ति : (i) समकोण ∆AMD में, AM2 + DM2 = AD2 …..(1)
समकोण ∆AMC में,
AC2 = AM2 + MC2
= (AD2 – DM2) + MC2 [समीकरण (1) से AM2 = AD2 – DM2]
= AD2 – DM2 + (DM + DC)2 [∵ MC = DM + DC]
= AD2 – DM2 + DM2 + 2DM . DC + DC2
= AD2 + 2 DM . DC + (\frac{1}{2}21​ BC)2 [∵ D, BC मध्य-बिन्दु है]
= AD2 + (2DC). DM + \frac{1}{4}41​ BC2 [∵ 2DC = BC]
अत: AC2 = AD2 + BC . DM + \left(\frac{B C}{2}\right)^{2}(2BC​)2 ……(2)
इति सिद्धम्

(ii) समकोण ∆AMB में,
AB2 = AM2 + BM2
= (AD2 – DM2) + BM2
= AD2 – DM2 + (BD – DM)2
= AD2 – DM2 + BD2 – 2BD . DM + DM2 [∵ (a – b)2 = a2 – 2ab + b2]
= AD2 – 2BD . DM + BD2
= AD2 – BC . DM + \left(\frac{1}{2} B C\right)^{2}(21​BC)2 [∵ D, BC का मध्य-बिन्दु है।]
AB2 = AD2 – BC . DM + \frac{1}{4}41​ BC2 …….(3)
अत: AB2 = AD2 – BC . DM + \left(\frac{B C}{2}\right)^{2}(2BC​)2
इति सिद्धम्

(iii) खण्ड (i) व खण्ड (ii) के परिणामों का योग करने पर,
AB2 + AC2 = 2AD2 + 2 . \frac{1}{4}41​ BC2 = 2AD2 + \frac{1}{2}21​ BC2
अत: AB2 + AC2 = 2AD2 + \frac{1}{2}21​ BC2
इति सिद्धम्

प्रश्न 6.
सिद्ध कीजिए कि एक समान्तर चतुर्भुज के विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।

हल
दिया है : ABCD एक समान्तर चतुर्भुज है जिसके विकर्ण AC और BD परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है : AC2 + BD2 = AB2 + BC2 + CD2 + DA2
रचना : A से BD पर AE C से BD पर CF लम्ब खींचा।
उपपत्ति: ABCD एक समान्तर चतुर्भुज है और AC तथा BD उसके विकर्ण हैं जो परस्पर O पर काटते हैं।
∴ AO = OC, OB = OD तथा AB = CD
तब, समकोण ∆ABE में,


 

प्रश्न 7.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD परस्पर बिन्द P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP

हल
दिया है : एक वृत्त की AB व CD दो जीवाएँ हैं जो एक-दूसरे को बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP
रचना : रेखाखण्ड AD व CB खींचे।
उपपत्ति : (i) जीवा AB और CD परस्पर P पर काटती हैं।
शीर्षाभिमुख कोण ∠APC = ∠BPD
∠CAP = ∠BDP (एक ही वृत्तखण्ड के कोण हैं)
और ∠ACP = ∠DBP (एक ही वृत्तखण्ड के कोण हैं)

अब, ∆APC और ∆BPD में,
∠APC = ∠BPD
∠CAP = ∠BDP
∠ACP = ∠DBP
दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆APC ~ ∆DPB
इति सिद्धम्
(ii) ∆APC और ∆DPB में,
\frac{A P}{D P}=\frac{C P}{P B}DPAP​=PBCP​
अत: AP . PB = CP . DP
इति सिद्धम्

प्रश्न 8.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD

हल
दिया है : AB और CD एक वृत्त की दो जीवाएँ हैं जो बढ़ाने पर एक-दूसरे को वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD
रचना : रेखाखण्ड AC व BD को मिलाया।
उपपत्ति : (i) चतुर्भुज ABCD एक चक्रीय चतुर्भुज है और ∠PAC उसका बहिष्कोण है।
∠PAC = ∠BDC
⇒ ∠PAC = ∠BDP
इसी प्रकार, ∠PCA, चक्रीय चतुर्भुज ABCD का बहिष्कोण है।
∠PCA = ∠ABD
∠PCA = ∠PBD …..(2)
अब, ∆PAC और ∆PBD में,
∠CPA = ∠BPD (दोनों त्रिभुजों का उभयनिष्ठ कोण है)
∠PAC = ∠BDP [समीकरण (1) से]
∠PCA = ∠PBD [समीकरण (2) से]
दो त्रिभजों की समरूपता के गुणधर्म AAA से,
∆PAC ~ ∆PDB
इति सिद्धम्
(ii) ∵ ∆PAC ~ ∆PDB
\frac{P A}{P D}=\frac{P C}{P B}PDPA​=PBPC​
⇒ PA . PB = PC . PD
इति सिद्धम्

 

प्रश्न 9.
दी गई आकृति में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि \frac{B D}{C D}=\frac{A B}{A C}CDBD​=ACAB​ है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

हल
दिया है : ∆ABC की भुजा BC पर एक बिन्दु D ऐसा है कि \frac{B D}{C D}=\frac{A B}{A C}CDBD​=ACAB​Thanks! for visiting the official website of Jharkhand Board Solutions (JacBoardSolutions.in). Jai Hind!

Share this:

  • Twitter
  • Facebook

Filed Under: Class 10

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Copyright © 2021 · Jac Board Solutions